Study on Epitaxial Ruthenium Oxide Thin Films

Q. Yao^{1,2}, H.F. Yang², M.Y. Li², Z.T. Liu², D.W. Shen^{2*}, D.L. Feng^{1*}

¹Department of Physics, Fudan University, Shanghai 200433, China ²State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences 200050, China Mail: giyao13@fudan.edu.cn

Ternary Ruthenium oxides are widely studied for their unique properties. There exist charge, spin, phonon and spin-orbit coupling interactions and strong electronic correlations play an important role in 4d electron systems. The members of the Ruddlesden-Popper series $Sr_{m+2}Ru_{m+1}O_{3m+4}$ present different properties. SrRuO₃ is known as a ferromagnetic metal while Sr_2RuO_4 is paramagnetic. The differences between the same series of compounds are intriguing. Maybe they are potentially related.

Separately, SrRuO₃ has attracted interest as a conducting layer in epitaxial heterostructures with a variety of functional oxides owing to its good conductivity. Besides, it should be mentioned that Sr₂RuO₄ is generally considered as a kind of spin-triplet superconductor and candidate material to realize topological superconductors and the search for Majorana fermions. However, relevant experiments should be carried on large-sized thin films with high quality.

We grow the thin films by oxide molecular beam epitaxy technology which can realize the control of high-purity strontium and ruthenium metals' evaporation independently in an oxygen atmosphere. Layer-layer growth mode is achieved through regulation of deposition rate ratio. We fabricate high quality and high precise stoichiometric ratio of SrRuO₃ and SrRuO₄ thin films with co-deposition and shutter-control growth modes respectively. Then angle-resolved photoemission spectroscopy is applied to study their electronic structures. Basing on the preliminary results, we will force on the SrRuO₃ 'sandwish' heterojunction growth and expect the realization of superconductivity of Sr₂RuO₄ epitaxial thin films.